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Abstract: The influence of diffusion on the excimer or exciplex photokinetics has been investigated by numerical integration of 
the standard coupled differential equations for the situation where the forward quenching step has a time-dependent rate con­
stant given by the continuum theory of diffusion-controlled reactions. The influence of diffusion on both the fluorescence decay 
and steady state behavior was investigated for a number of cases representative of typical exciplex systems. Methods of correc­
tion are discussed. 

I. Introduction 
It is well known that transient effects1-3 associated with 

diffusion play an important role in a number of simple 
quenching systems.2'4-5 These effects, however, have largely 
been ignored in excimer and exciplex systems although such 
systems have been under investigation for a number of years. 
A recent study5,7 of the anthracene-A/,A/-dimethylaniline 
exciplex system demonstrated that the transient effect could 
be very large and should not be ignored even for nonviscous 
solvents like cyclohexane. 

The present study is an attempt, through numerical calcu­
lation, to evaluate the importance of transient effects under 
a variety of conditions. A number of correction methods were 
critically tested in order to find suitable ways of correcting 
quenching data for these effects. 

II. The Model 
lit) *MQ] 

A —>- A* « AQ* 

hv + A A hv + A + Q products 

The reaction scheme used was the standard excimer type 
of mechanism8 for nonpolar solvents with the exception that 
M O was time dependent and given by the full diffusion rate 
equation 1,2,3,5 

MO = 
4TTRDN 

where 

and 

I + {D/K 

x = 

erfc(x) = 

R) L D 

VDI 
(RDf[D + KR]) 

2 

ex erfc(x) 

VZ s: dz 

0) 

(2) 

(3) 

R is the critical distance at which reaction takes place. D is 
the mutual diffusion coefficient between A* and Q. 

D = DAQ = DA + DQ (4) 

and K is the elementary reaction rate constant. The time de­
pendence of &3 is shown in Figure I for typical R, D, and K. 

There are various degrees of approximation to eq I. In the 
zeroth order the time dependence is dropped altogether to 
give 

""7^T-
where 

R' = 
R 

(5) 

(6) 
I + (D/KR) 

Equation 5 in fact gives the limiting value of M O as t -* <*> 
The next degree of approximation gives 

R' 
k3" = 4TTR'DN' (I + - ^ = ) 

\ WbI) 
(7) 

This equation is obtained by using the asymptotic expansion 

• erfc(x) = —7= (1 r + —T - -—j + . . . 
xVZ \ 2x2 4x4 8x8 / 

(8) 

and retaining only the leading term. Thus 

exl erfc(x) = l / x v 7 (9) 

and eq 7 is obtained. 
For ordinary values of K, D, and R, it is found that &3 and 

^3" are practically the same except for the first approximately 
100 ps after 5-pulse excitation. 

The reaction scheme gives rise to the following coupled 
first-order differential equations with time-dependent coeffi­
cients: 

d[A*] = 

d; 
-(*i + k2 + MO[Q])[A*] + MAQ*] (10a) 

^ ^ - = MO[Q][A*] - (k4 + k5 + M[AQ*] (10b) 
df 

These equations were solved numerically on the CDC Cyber 
73/14 computer by means of Hamming's modified predictor 
corrector method. The particular subroutine employed was 
HPCG from IBM System/360 Scientific Subroutine Package. 

The boundary conditions are for / = 0, [A*] = 1, and [AQ*] 
= 0, which yields the equivalent of the 5-pulse system response. 
The upper error bound, e, was adjusted as follows: 

[A*] 
io°-io-2 

10-2-10-4 

io-4-io~6 

6 

10~6 

10-7 

10-8 

The calculation began at t\ = 0 and continued to t( = 0.5 MS 
or when either [A*] or [AQ*] fell below 1O-6. 

[A*] and [AQ*] were then integrated numerically from t\ 
to t(. The curves were then further integrated analytically to 
infinity assuming that the curves decayed exponentially to 

Journal of the American Chemical Society / 98:16 / August 4, 1976 



4713 

Table I. Parameters Used in the Calculations 

Case 

A 
B 
C 
D 
E 
F 
G 
H 
I 

T0, ns 

5.217 
2 

10 
5.217 
5.217 
5.217 
5.217 

18.5 
18.3 

* 4 , 
MS ' 

3.68 
3.68 
3.68 

36.8 
368 

7.936 
0.427 
0.150 

4740 

^ p , 
M S - 1 

9.23 
9.23 
9.23 
9.23 
9.23 
9.23 
9.23 

110 
353 

R',k 

7 
7 
7 
7 
7 
5.527 
8.126 
4 
5.43 

DX 105 

cm2 s_1 

1.75 
1.75 
1.75 
1.75 
1.75 
4.78 
0.175 
4 
4.5 

ATTR'DN', 
M S - 1 

M-' 

9.27 
9.27 
9.27 
9.27 
9.27 

19.99 
1.076 

12.11 
18.49 

infinity with time constant equal to ^(T 7 + T") where r' is the 
apparent time constant at t( and r" is the long-time constant 
(72, see later section) when A3 is constant, T' and T" are es­
sentially identical for all cases encountered. 

In order to calculate k?,{t) according to eq 1, the subroutine 
MERF (IMSL Library 3,4th ed, International Mathematical 
and Statistical Libraries, Inc., 1974) was used to compute the 
complementary error function (eq 3). However, since erfc(x) 
is extremely close to zero when x > 8, eq 9 was used instead 
to compute the value of ki(t). At this x value, the values cal­
culated according to eq 1 and 9 are well within 1%. However, 
the use of a different equation does create a slight discontinuity 
in ki(t). This occurs at a point when ki(t) is decreasing rea­
sonably rapidly in value. Hence, no irregularities are apparent 
in [A*](f) or [AQ*] (?) at this point. 

III. Choice of Parameters 
The necessary rate parameters of the kinetic scheme are 

completely described by the following variables: ro = 1/(Ai 
+ k2), Jt4, kp = k5 + k6, R' = R/(\ + D/KR), D, and K. K was 
calculated from gas kinetics using1 

K = kgas/4irR2 
vgas 

with Agas = 10_1° cm3 molecule 

( H ) 

s -1. Note that K does not 
have the usual units of a rate constant. Nine different combi­
nations of such parameters were used in the calculation, and 
these are shown in Table I. 

Combination A represents the approximate condition of the 
anthracene-./V,./V-dimethylaniline system6 in hexane at room 
temperature. Combinations B through G are all based on A. 
|B,A,Cj represents an increase in ro. A4 is increased in jA,D,Ej. 
(F,A,G) represents a change in both A-KR'DN' and ki, while 
keepjug AtrR'DN'Ikt, constant. Finally, H and I represent the 
"rapid equilibrium" situation of a-cyanonaphthalene and 
1,2-dimethylcyclopentene in hexane.8'9 

In each combination [Q] ranges from zero to approximately 
1.25[Q] 1/2 where [Q] 1/2 is the quencher concentration at 
which $ M / * M ° = % 

IV. Tests for Accuracy 

The IBM/360 Scientific Subroutine Package claims that 
"numerical experience seems to show that the procedure does 
not exceed a global relative error approximately equal to e". 
With the«values used in this calculation, the accuracy is thus 
more than enough for our purpose. 

An independent method was used to test the accuracy of the 
procedure. When A: 3 is constant, eq 10 can of course be solved 
analytically. The procedure was applied to a situation in which 
the rates are similar to case A with the exception that £3 was 
kept constant at A-KR'DN'. The result obtained was compared 
with that obtained by numerical integration of eq 10. It was 
found that at t{ = 0.5 ns, the error in [A*] was 1.3 ppm and 
that in [AQ*] was 0.35 ppm. The error in integration to infinity 

7 

6 
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8 
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Figure 1. Plot of eq 1 as/(/) for D = 1.62 X 10- 5 cm 2 s- ' , .R = 9.55 A, R' 
10 - 1 0 cm3 molecule-1 s _ l . Insert: ex-= 8 A, K = kg 

pansion of the plot from 0 to 0.4 ns. 

was slightly larger. The area under the [A*](f) curve had an 
error of 0.02% while the error for the [AQ*] curve was 0.008%. 
This is clearly satisfactory for the purpose at hand. 

V. Results and Discussion 

The numerical calculation generated [A*], [AQ*], and the 
areas under these two functions. [A*] and [AQ*] are the time 
responses of the system to 5-pulse excitation, while the areas 
under [A*] and [AQ*] give a measure of 3>M and 3>E, respec­
tively. Hence, the Stern-Volmer curve ( ^ M V ^ M vs. [Q]) and 
^ E / ^ M vs. [Q] curves can be readily generated. 

The special concern of this work is to examine what sort of 
discrepancies occur in the above-mentioned data ([A*], 
[AQ*], $ M ° / ^ M vs. [Q], and 4>E/*M VS. [Q]) when transient 
effects come into play. 

When £3 is constant (= A-KR'DN'), the following equations 
result.3'6-7 

[A*] = C i r x ' ! + C 2 r ^ 

[AQ*] = C 3 ( e - x " - e - X 2 ' ) 

where 

„ __ \\ — ka, — kp 

C\ = — ; ; K[A*]0 

C2 = 

X, — X2 

ki, + kp — X2 

X1 - X 2 
[A*]0 

and 

Xl — A2 

(12) 

(13) 

(14) 

(15) 

(16) 

1/T,,2 = X,,2 = V2JAr1 + k2 + h[Q] + kA + kp 

± V(ki +k2 + A3[Q] - k\ - kp)2 + 4k3k4[Q]\ (17) 

In addition, for the steady state the following equations 
apply3'6'7 

* M ° / * M = 1 + ( 7 - ^ ) ( V * 4 + Ap) [Q] (18) 
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Figure 2. (—) Numerically generated [A*] and [AQ*] based on M O -
(- - -) Limiting case of /fc3 = ATR'DN'. Case A, Table I, [Q] = 0.004 07 
M. 

TIME(nsec) 

Figure 3. (—) Numerically generated [A*] and [AQ*] based on ki(t). 
(- - -) Limiting case of k3 = A-KR'DN'. Case B, Table I, [Q] = 0.027 
M. 

*E/*M = r - r r iQ] (19) 

[note that •SE/'I 'M is defined here in a different manner than 
in earlier publications6,8]. The question is, how well do these 
equations describe the system when A: 3 is no longer time in­
dependent? 

For example, can [A*] and [AQ*] be represented by a sum 
and difference of exponentials? Are the T\ and T2 values in 

^o 35 40 60 
TIME (nsec) 

Figure 4. (—) Numerically generated [A*] and [AQ*] based on k(t). 
(- - -) Limiting case of k} = AirR'DN'. Case C, Table I, [Q] =0.008 14 
M. 

[A*] the same as those in [AQ*]? Do the coefficients Ci, Ci, 
and C3 bear any relation to those predicted by eq 14-16? If one 
writes [AQ*] a s > V ' / T 1 + A2e-'^2, is A] = -A1I 

Equation 18 predicts the Stern-Volmer plots to be linear. 
On the other hand, in simple quenching systems (no exciplex 
formation) in the presence of transient effects the line usually 
curves upwards with magnitude of the curvature dependent 
on the importance of the transient effect.4-5 In the present 
cases, is the line straight or curved? Similarly, what about the 
3>E/*M curve? Also, is there a suitable method to analyze the 
decay curves and a suitable way to correct the steady state data 
for transient effects? 

There are several assumptions implicit in this kinetic 
treatment, (a) The initial distribution of A and Q is random, 
(b) One can ignore the dissociation of AQ* to regenerate A* 
and Q as neighbors. Assumption (a) has been discussed at 
length in an earlier publication.5 The point in question is merely 
the influence of ground state complexing. Assumption (b) 
appears safe for complexes with lifetimes significantly longer 
than the time required for A: 3 to reach, say, 90% of its steady 
state value. The possibility of recombination of the A*-Q pair 
is included in the value of A;4 found necessary to account for 
the kinetic data behavior. 

(a) Behavior of [A*]. In general [A*], generated from eq 10, 
decays with a shape qualitatively corresponding to the sum of 
two exponentials. However, a direct comparison reveals that 
[A*] initially falls more rapidly than predicted by eq 12 and 
then decays with the same long-time constant. Direct com­
parison can be made by taking A: 3 = AirR'DN' for the evalua­
tion of eq 12, and otherwise using the same parameters in the 
solutions of eq 10 and the generation of the decay by eq 12. 
When this is done, the [A*] from eq 10 crosses that predicted 
by eq 12 and both decay with the same long-time constant. At 
long time [A*] from eq 10 is displaced above that predicted 
by eq 12. This is illustrated in Figures 2, 3, and 4 for cases A, 
B, and C. The above remarks apply to the case where the ex­
ciplex lifetime is considerably longer than the time required 
for A: 3 to reach 90% of its steady state value (a few nanosec-
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Table II. Results of Numerical Integration of the Coupled Exciplex Differential Equations 

Case 

A 
B 
C 
D 
E 

F 
G 
H 

I 

Shape of 
[A*](0 

Analyzable 
Barely analyzable 
Analyzable 
Barely analyzable 
Not analyzable, r\ too 

short, undershoot 
Analyzable 
Barely analyzable 
Not analyzable, T\ too 

short, 
C1 too small 

Not analyzable, T\ too 
short, 
Ci too small 

R'/V7^F, 
% 

23.2 
37.4 
16.7 
23.2 
23.2 

11 
85 
46 

6.0 

Â sv 

44.77 
19.19 
81.74 
11.49 
1.289 

63.23 
11.98 

100.9 

25.37 

£31-0 

X *P 
kA + kp 

34.58 
13.26 
66.28 
9.699 
1.184 

56.09 
5.37 

94.78 

23.46 

^ M 

1.30 
1.45 
1.23 
1.19 
1.09 

1.12 
2.23 
1.06 

1.08 

d 

d[Q] 

x ( - ) 

936.8 
1052 
895.0 
237.9 
26.53 

1314 
257.4 
49.72 

3.942 

ki 
£4 + kp 

718.1 
718.1 
718.1 
201.4 
24.58 

1165 
111.4 
46.57 

3.631 

RE 

1.31 
1.47 
1.25 
1.18 
1.08 

1.13 
2.31 
1.07 

1.09 

£31-0 

x ( kV ) 
Kk4 + kj 

42.59 
18.22 
77.37 
11.95 
1.46 

62.30 
9.93 

99.05 

24.86 

Ksw° 

42.15 
17.86 
77.0 
11.75 
1.39 

61.6 
9.85 

99.18 

24.82 

onds) and the monomer quenched decay time is of the order 
of 2-10 ns. 

It was considered of interest to examine the influence of the 
time dependence of £3 when the decay was forced to fit a 
double exponential. That is, what errors are encountered in Xi 
and X2 for various sets of rate constants and quencher con­
centrations? 

In order to examine this question, data were generated by 
two different techniques. In the first, [A*] from the solution 
to eq 10 was convoluted with a typical lamp (which incorpo­
rated photomultiplier distortion)10-11 and the resultant curve 
normalized to 105 counts. Gaussian noise was then added. This 
represents in a rather realistic manner the type of decay curve 
obtained from the single photon technique.10-12 In the second 
method, [A*] was normalized to 105 counts without convolu­
tion, and Gaussian noise then added. These decay data rep­
resent what one would obtain with a single photon instrument 
of infinite time resolution with a 5 pulse of light.10,11 

The decay curves generated by convolution with a typical 
lamp were then deconvoluted by iterative convolution 10 'n 

assuming an instantaneous fluorescence response function C\ 
exp(-Xif) + C2 exp(-X2?)- In general when the monomer 
curve was analyzed from the initial point on the rising edge, 
the fit to the double exporential was poor (x2 » I)-13 If the 
starting point for the iterative convolution was gradually 
shifted to longer times beyond the maximum, the fit improved, 
Xi became smaller and approached the value predicted by eq 
17, whereas the X2 became constant and agreed with that ob­
tained from the analysis of the [AQ*] decay (vide infra). The 
pre-exponential factors also changed and approached constant 
values as Xi and X2 approached their limiting values. 

Thus meaningful values for Xj and X2 can be obtained pro­
vided the short-lived component of the monomer decay curve 
is long compared with the time evolution of £3, and provided 
C\ is not too small. As the decay time of the short component 
approaches the time required for k$ to reach, say, 90% of its 
steady state value, it is no longer possible to obtain an iterative 
two-component fit working only on the trailing edge of the 
decay at some distance from the maximum. 

These observations are summarized in Table II. In this table 
the notation "analyzable" means that the curve behaves nor­
mally in the sense that if one omits the initial portion of the 
decay one can recover the Xi and X2 that pertain to the situation 
where £3 has reached its steady state value. It was found that 
this can be done to within a few percent error. 

Table II contains a number of cases which are not "analy­

zable" and the reasons are indicated in the table. The rate 
constants responsible for this state of affairs can be found in 
Table I. 

Cases A and B were also examined to determine the validity 
of the frequently used equation3'8'9 

Xi + X2 = k\ + k2 + k3[Q] + k4 + kr (20) 

which is the standard route to k-$. The only difference between 
cases A and B is that in the latter the unquenched lifetime is 
quite short (2 ns vs. 5 ns). £3(0 was the same in both cases. The 
results were as follows. In case A, the values of ki were on the 
average 3% too high. k3 obtained from eq 20 was 9.5 ± 1.2 ns-1 

M - 1 whereas 4wR'DN' was 9.27 ns -1 M - 1 . Thus the error in 
establishing the steady state k3 was only 2.5%. In case B where 
the forced fit to two exponentials is less successful, eq 20 gives 
k3 = 10.96 ± 1.27 ns -1 M - 1 whereas A-KR'DN' was again 9.27 
ns~x M - ' . The error is 18%, and of course as the unquenched 
lifetime is decreased further the error will increase and the fit 
to two exponentials will further deteriorate. 

Under certain circumstances (case E, for example, with 
large k4), the decay of [A*] exhibits a pronounced undershoot. 
[A*] initially drops rapidly, then it recovers, passes through 
a slight maximum, and then decays again to give a long com­
ponent with X2 equal to the input X2. This is illustrated in 
Figure 5 for case E. This is not due to the almost insignificant 
discontinuity in ki(t) described above (in the evaluation of x2 

erfc(x)) and appears to be a real effect. The explanation is 
merely that the decay of [A*], the growth of [AQ*], and the 
time dependence of £3(0 combine to give over a short period 
of time a net increase in [A*] from feedback. The sign of 
d[A*]/dr was checked using eq 10 and at the point in time 
where [A*] is increasing one indeed has a positive derivative 
using the parameters for case E. 

In cases where it is possible to recover Xi and X2 by judicious 
choice of deconvolution limits, we can then recover all the rate 
constants by one of several methods. See, for example, papers 
I,III,andIVofthisseries.6'8'9 

(b) Behavior of [AQ*]. The temporal behavior of [AQ*] also 
departs from what one would expect on the basis of a time-
independent £3. [AQ*] in fact rises much more rapidly than 
expected from eq 13. If a comparison is made using £3 = 
4irR'DN' for £3 in eq 13 and otherwise the same parameters 
in eq 10 and eq 13, one observes that the initial faster rise is 
followed by a displacement such that the plot of eq 13 lies 
below that of the solutions to eq 10. The two eventually parallel 
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t (nsec) 

Figure 5. (—) Numerically generated [A*] and [AQ*] based on k(t). 
(- - -) Limiting case of Ar3 = ATTR'DN'. Case E, Table I, [Q] = 0.344. 

one another as would be expected once Ar3(O has become es­
sentially constant. This is illustrated in Figures 2, 3, and 4. 
Also, a time-dependent £3 causes the coefficients in C3 'e_Xl ' 
— Ci"e~X2' to be of unequal magnitude. While one still gets 
a growth and subsequent decay, [AQ*] is no longer described 
by C3[exp(-X,0 - exp(-X20]-

[AQ*] remains useful for determining rate constants in the 
presence of significant effects attributable to /c3(f) only insofar 
as one can establish the long lifetime from that portion of the 
decay well past the maximum. It appears that the error here 
is negligible unless the exciplex is quite short lived. To attempt 
to obtain the short lifetime requires inclusion in the deconvo-
lution of that portion of the decay leading up to the maximum 
and for the cases listed in Table I this approach is hopeless, and 
a different approach is required. It should be recognized that 
with a more general analysis the rising edge of [AQ*] can 
potentially yield R and K.7 

(c) Steady State. As described above, the steady-state ratios 
* M / * M ° and $ E / $ M were obtained by integrating decay laws 
to infinity. The resultant Stern-Volmer plots were in general 
slightly curved upwards but this curvature was so slight as to 
probably escape detection even in measurements of rather high 
precision (1-2%). The $ E / * M vs. [Q] plots parallel the be­
havior exhibited by the Stern-Volmer plots in the sense that 
there is slight upward curvature. 

Thus for the cases given in Table I, the steady-state data can 
be treated as linear to an excellent approximation. For both 
4 M / * M 0 and $ E / ^ M VS. [Q], the slopes obtained were always 
considerably greater than predicted by eq 18 and eq 19 when 
£3 was taken as AvR'DN'. In some cases the discrepancy was 
very large (750%). 

It is helpful at this point to define a quantity which gives a 
measure of the transient effect in various cases. A useful pa­
rameter appears to be given by1"5 £ = R'/VTQD. In the sim­
plest quenching system (no exciplex, with constant A;3 = 
AttR'DN') the Stern-Volmer equation is 

«I>M7*M = 1 + Vo[Q] (21) 

On the other hand, when diffusion effects are taken into ac­
count by assuming kq to be given by eq 7, the following can be 
derived: 

lim ( ^ ) = l + V o ( l + T = 7 i ) [ Q ] (22) 

Hence, | can be used as a measure of the transient effect. 
Of course, eq 7 is not as exact as eq 1 (A;q is overemphasized 
in the initial 100 ps or so). £ does, however, give an indication 
of the transient effect due to diffusion. 

The following correction methods for steady state data were 
examined. 

Method A. Equations 18 and 19 can be rewritten as 

(<J>M°/<S>M - D = V o ( Y ^ Y ) IQ] (23) 

$E 

3>M V M / V M -r "-p' 

These two equations are correct if A; 3 is constant. Since in 
all nine cases studied the steady state plots were reasonably 
straight, it is therefore possible to represent the data empiri­
cally as: 

-©Cd?r> 

-[Q] 
$ E 

(25) 

(26) 
k\ fc4 4- A;p 

The question is whether or not A:3 in both eq 25 and 26 is the 
same. 

In Table II, the following are listed: (a) Ksv = the slope of 
the Stern-Volmer curve; (b) /c3ro [kp/(k4 + kp)] = expected 
slope if there is no transient effect; (c) RM - #sv/Vo(^p/[&4 
+ kp]); (d) d/d[Q] ( $ E / * M ) = slope of * E / * M VS. [Q] curve; 
(e) k3/(^4 + kv) = expected slope, divided by known ( V V . 
in the absence of diffusion transient effect; (f) /?E = d/d[Q] 
($E/*M)/[^3/ (^4 + Arp)]. IfAr3 in eq 25 and 26 is the same, 
RM would be equal to R^. Indeed, as shown in Table II the two 
numbers are very close in all nine cases. Therefore, this is a 
valid and very useful correction method. 

Another observation is that diffusion effects are always 
present even in case H (6%) which represents approximately 
the system a-cyanonaphthalene and 1,2-dimethylcyclopentene 
in hexane at room temperature. Also, note that in case G, the 
discrepancy in the slope is very high (123%). 

This method, though accurate, is not applicable at all times 
since to use this approach Ac3 = 4-rrR'DN', TO, AC4, and A:p must 
be known. One way is to obtain these parameters from kinetic 
data (anthracene-JV.TV-dimethylaniline case). But as men­
tioned in the last section, accurate determination of the steady 
state Ac3 is not always possible. 

Method B. When there is no exciplex formation and no 
diffusion effect, 

If the effect of diffusion is added (using eq 7), 

lim (tfsv) = Ksv° = V o fl + -7=) 
[Q]-O \ VT0DJ 

For the exciplex system without diffusion effects, 

kc 

(28) 

*v-*™(rfrJ (29) 

Equations 27-29 naturally suggest one try the following: 

Ksv0 = V o (T^T-) (1+-T=R\ Kk4 + kp/ \ VT0Z)/ 
To check the validity of the equation 

(30) 

C3TO 

and A ŝv0 values were calculated and listed in Table II. The two 
numbers are indeed always very close to one another. There­
fore, this correction method is reasonably accurate. On the 
other hand, this method requires the knowledge or estimate 
of D and R'. 

It is also noteworthy that the 
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Table III, Rapid Equilibrium Case 

kp, ns -1 k^jki, Recovered A;p 

0.353 3.90 0.368 

Recovered k^/k^ 

3.58 

value, though close to Ksv°, is always slightly larger. This is 
probably due to the fact that eq 7 instead of eq 1 was used to 
derive the correction factor. Since eq 7 overemphasizes Aj(O 
especially at short times, the correction factor is probably 
slightly too large. 

(d) Rapid Equilibrium Case. [A*] and [AQ*] were gener­
ated in the usual manner from eq 10 using the parameters of 
case I.8'9 Ln [A*] is essentially a straight-line function of time 
except for the initial 1 or 2 ns. The In ([A*]) vs. t curves were 
analyzed as straight lines from 10 ns beyond the beginning of 
the curve to give r = 1 /X. Typical results are shown in Figure 
6 for case I. It is easily shown that 

(X-X 0 ) - 1 = • + • [Q]-kP
 _ Xo (kp - Xo)Zc3/&4 

where Xo pertains to [Q] = 0. 
(X — Xo)-1 was plotted against [Q]-1. The slope gives l/(Zrp 

- X0) and intercept l/(Zcp - Xojkj/k^ Since X0 = l /r0 was 
known, kp and k^kt, could be calculated. 

In the Table III, kv and k^ki, were the input numbers for 
the numerical calculation, where Zr3 = 4-irR'DN', and R' and 
D are as given in Table I, case I. Recovered kp and A:3/fc4 are 
the values obtained from the above procedure. Thus there are 
small but significant errors even when TO = 20 ns. 

The ultimate goal in the analysis of quenching systems 
thought to involve exciplexes is to examine the validity of 
various kinetic schemes and then establish rate constants and 
temperature coefficients as a function of solvent, quencher, etc. 
Unfortunately, the systems in question can be completely de­
scribed by no less than six rate constants (and in polar solvents 
probably seven are required). Two can be obtained from the 
unquenched monomer and Zc5 and Zc6 can be combined without 
the loss of essential information. However, Zc3 is a function of 
D, R, and K and even if D is known accurately one has in gen­
eral four unknowns: Zc4, kp, R, and K. One possibility for a more 
general solution to the problem posed in this paper would be 
to search for a minimum in the resultant four-dimensional x2 

surface generated by comparing monomer or exciplex curves 
with those computed by convolution of numerical solutions to 
eq 10 with the instrumental response function"-12 appropriate 
to the data at hand. This would probably be both expensive in 
computer time and prone to problems associated with noise in 
the data1' and would furthermore require a rather good initial 
guess if it was successful at all. The treatment in this paper 
could provide the starting point for such a calculation. 

The sensitivity of the fit to the uncertainty in D would also 
require investigation. This approach has not been investigated 
in the present research but may have considerable merit. 

VI. Conclusions 

This study shows that transient effects associated with dif­
fusion can be very large indeed and should never be neglected. 
The effect on decay data is relatively less serious and can be 

20 40 

TIME(nsec) 
Figure 6. The rapid equilibrium limit (case I, Table I). [Q] •• 
Lines calculated from eq 10 for ki = f{t). 

0.0212 M. 

avoided in some cases. On the other hand, the effect on steady 
state measurements is very large. The correction methods 
suggested are reasonably accurate but are not free from 
problems. On the whole, the picture is not very encouraging 
because only in certain cases can rate constants be recovered 
accurately. 

The analysis presented here may be considered a useful 
preliminary to a more rigorous analysis, even when only rough 
estimates of rate constants result. 
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